
		
			Birds


			

		

	
		
			African Grey Parrot.  The African grey parrot is a medium-sized parrot about 12 inches long.  It is native to Africa.  African grey parrots feed primarily on nuts and fruits.  African grey parrots are sometimes kept as pets.  People have been keeping parrots as pets for over 4,000 years.  African grey parrots are able to mimic human speech very well.  In some cases they may be able to associate human speech with its meaning. 
 




			

		

	
		
			Barn Owl.  The barn owl is a bird of prey that hunts mainly at night.  Barn owls usually eat small mammals, such as rats and mice.  Barn owls are from 13 to 14 inches in length.  These birds are called barn owls because they frequently live near humans.  Barn owls are found in North and South America, Europe, Africa, India, Southeast Asia, and Australia.



			

		

	
		
			Black-Capped Chickadee.  The black-capped chickadee is identified by its call, which sounds exactly like its name.  It eats insects, seeds, and berries.  It is 5 inches long.  Black-capped chickadees usually live in flocks of between 8 to 12 birds.  It is found in North America.



			

		

	
		
			California Quail.  The California quail is a game bird.  This means that it is hunted for sport.  The California quail moves in flocks.  It is between 9 to 11 inches long.  The California quail eats berries, seeds, and insects.  Both male and female quails have head plumes.  The California quail is found in the Western United States.



			

		

	
		
			Canada Goose.  The Canada goose is found in North America.  It breeds in the north and migrates to the south in the fall.  The Canada goose is from 22 to 43 inches long.  Flocks usually travel in a V formation.  The Canada goose call is a loud honking sound.  They eat aquatic plants, grass, grain, and small aquatic animals.  The Canada goose is part of the waterfowl family.



			

		

	
		
			Crow.  The crow is considered by some to be an aggressive bird.  They are also considered to be very intelligent.  The crows call note is a distinctive "caw."  Crows are from 17 to 21 inches in length.  They are omnivorous, eating almost everything.  Crows are very widespread, they are found throughout the United States.  They are the largest of the songbirds.



			

		

	
		
			Hermit Thrush.  The hermit thrush is 7 inches long.  It eats insects, spiders, earthworms, and fruit.  The hermit thrush is considered to be a very shy bird.  Hermit thrushes are very common in gardens.



			

		

	
		
			Peregrine Falcon.  The peregrine falcon is a bird of prey.  It is considered to be one of the swiftest of birds; it has been clocked at over 200 miles per hour.  This bird was almost eliminated in the United States due to DDT poisoning; it is now slowly recovering due to a captive breeding program.  The Peregrine falcon is from 15 to 20 inches long.  It eats birds caught in flight, it will sometimes eat small mammals.  The peregrine falcon is found almost worldwide. 



			

		

	
		
			Purple Finch.  The purple finch is from 5 to 6 inches long.  It eats seeds, fruits, and insects.  It is found in the Eastern United States, most of Canada, and in the Pacific states.



			

		

	
		
			Red-Winged Blackbird.  The red-winged blackbird is common throughout the United States.  It is between 7 and 9 inches long.  It eats seeds, grains, and insects.  There are other blackbirds in the United States; the yellow-headed blackbird, the rusty blackbird, and the Brewer's blackbird.



			

		

	
		
			Rhode Island Red Rooster.  The Rhode Island Red Rooster is a domesticated bird, used for food.  It is an excellent farm bird.  Rhode Island Red Roosters weigh about 8 and a half pounds.  This chicken was developed in 1854 from Malaysian stock that was refined in Rhode Island and Massachusetts.  The Jungle fowl is the ancestor of the domesticated chicken.



			

		

	
		
			Robin.  The robin is from 9 to 11 inches long.  It eats insects, berries, and earthworms.  The robin winters in the south and returns north in the spring.  The robin is found throughout the United States.



			

		

	
		
			Turkey Vulture.  The turkey vulture eats dead animals, called carrion.  It uses its excellent sense of smell to find the dead animals.  It will sometimes eat small mammals and birds that are alive.  It has no feathers on its head because of the germs feathers would get from dead animals.  It is from 26 to 32 inches in length, it has a wingspan of 6 feet.  Because it has a very large wingspan a turkey vulture can glide for a long time while looking for food. 



			

		

	OEBPS/8524247019416518425.m4a


OEBPS/8524247019416518424.m4a


OEBPS/8524247019416518423.m4a


OEBPS/8524247019416518420.m4a


OEBPS/8524247019416518422.m4a


OEBPS/8524247019416518426.m4a


OEBPS/8524247019416518427.m4a


OEBPS/ibook.js
/*
 * Based on Apple's iBook JS Framework
 * Stripped down and enhanced for Book Creator
 */

// Top-level object containing some core constants providing information about the environment.
var iBook = {};

// Indicates whether the platform is an iBook.IS_IPAD.
iBook.IS_IPAD = (navigator.platform == 'iPad');

// Indicates whether the platform supports touches.
iBook.SUPPORTS_TOUCHES = ('createTouch' in document);

// The interaction start event name
iBook.START_EVENT = iBook.SUPPORTS_TOUCHES ? 'touchstart' : 'mousedown';

// The interaction move event name
iBook.MOVE_EVENT = iBook.SUPPORTS_TOUCHES ? 'touchmove' : 'mousemove';

// The interaction end event name
iBook.END_EVENT = iBook.SUPPORTS_TOUCHES ? 'touchend' : 'mouseup';

// The CSS selector for media elements.
iBook.MEDIA_BASE_CSS_SELECTOR = '.ibooks-media';

// The HTML attribute for the audio source
iBook.MEDIA_AUDIO_SOURCE_ATTRIBUTE = 'data-ibooks-audio-src';

// The HTML attribute for the audio reset on play
iBook.MEDIA_AUDIO_RESET_ATTRIBUTE = 'data-ibooks-audio-reset-on-play';

// The HTML attribute for pausing iBooks read aloud
iBook.MEDIA_PAUSE_READ_ALOUD_ATTRIBUTE = 'data-ibooks-pause-readaloud';

iBook.HYPERLINK_ATTRIBUTE = 'data-bookcreator-link';

// CSS class name on active elements
iBook.ACTIVE_CSS_CLASS = "active";

// Tap threshold value, in pixels
iBook.TAP_THRESHOLD = 10;

iBook.handleLink = function (e)
{
    var link = e.target.getAttribute(iBook.HYPERLINK_ATTRIBUTE);
    if (link)
    {
        e.preventDefault();
        window.location.href = link;
    }
}

iBook.getEventClientX = function (event) {
    if (event.changedTouches && event.changedTouches.length == 1) {
        // Touch interface
        return event.changedTouches.item(0).clientX;
    }
    else {
        // Desktop interface
        return event.clientX;
    }
}

iBook.getEventClientY = function (event) {
    if (event.changedTouches && event.changedTouches.length == 1) {
        // Touch interface
        return event.changedTouches.item(0).clientY;
    }
    else {
        // Desktop interface
        return event.clientY;
    }
}

/* ==================== BASE CONTROLLER ==================== */

function iBooksBaseController()
{    
    // Set true for an onscreen log
    if (false)
    {
        var logArea = document.createElement("textarea");
        logArea.id = "logArea";
        logArea.style.position = "absolute";
        logArea.style.bottom = "5px";
        logArea.style.left = "5px";
        logArea.style.width = "420px";
        logArea.style.height = "150px";
        logArea.style.zIndex = 4000;
        var body = document.getElementById("main");
        body.appendChild(logArea);
        
        iBook.log = function (msg) {
            var logArea = document.getElementById("logArea");
            if (!msg) msg = "null";
            logArea.value = msg + "\n" + logArea.value;
        };
    }
    else
    {
        iBook.log = function (msg) {};
    }    
    
    this.media = new iBooksMediaController();
    this.link = new iBooksLinkController();
}

// On DOM content loaded, instantiate the iBook base controller
window.addEventListener("DOMContentLoaded", function() {
    window.iBookController = new iBooksBaseController();
}, false);

/* ==================== ELEMENT PROTOTYPE ADDITIONS ==================== */

// Indicates whether the element has a given class name within its <code>class</code> attribute.
Element.prototype.hasClassName = function (className)
{
    return new RegExp('(?:^|\\s+)' + className + '(?:\\s+|$)').test(this.className);
}

// Adds the given class name to the element's <code>class</code> attribute if it's not already there.
Element.prototype.addClassName = function (className)
{
    if (!this.hasClassName(className))
    {
        this.className = [this.className, className].join(' ');
        return true;
    }
    else
    {
        return false;
    }
}

// Removes the given class name from the element's <code>class</code> attribute if it's there.
Element.prototype.removeClassName = function (className)
{
    if (this.hasClassName(className))
    {
        var curClasses = this.className;
        this.className = curClasses.replace(new RegExp('(?:^|\\s+)' + className + '(?:\\s+|$)', 'g'), ' ');
        return true;
    }
    return false;
}

// Adds or removes the given class name from the element's <code>class</code> attribute based on a condition. If no
// condition is set, the class will be added if it is not already present and removed if it is.
Element.prototype.toggleClassName = function (className, condition)
{
    if (condition == null)
    {
        condition = !this.hasClassName(className);
    }
    this[condition ? 'addClassName' : 'removeClassName'](className);
}

/* ==================== LINK CONTROLLER ==================== */

function iBooksLinkController()
{
    // <img data-bookcreator-link="page002.xhtml" .../> or <img data-bookcreator-link="http://www.google.com" .../>
    var imgElements = document.documentElement.getElementsByTagName("img");
    
    for (var i = 0, max = imgElements.length; i < max; i++)
    {
        var img = imgElements[i];
        var link = img.getAttribute(iBook.HYPERLINK_ATTRIBUTE);
        if (link)
        {
            // iBook.log("adding image click:" + link);
            img.addEventListener("click", iBook.handleLink, false);
        }
    }
}

/* ==================== MEDIA CONTROLLER ==================== */

function iBooksMediaController()
{
    this.allMedia = [];

    var audioElements = document.querySelectorAll(iBook.MEDIA_BASE_CSS_SELECTOR + "-audio");

    if (audioElements) {
        for (var i = audioElements.length - 1; i >= 0; i--) {
            this.allMedia.push(new iBooksAudioController(audioElements[i]));
        }        
    }
    
    var videoElements = document.documentElement.getElementsByTagName("video");
    
    for (var i = 0, max = videoElements.length; i < max; i++) {
        this.allMedia.push(new iBooksVideoController(videoElements[i]));
    }
}

/* ==================== VIDEO CONTROLLER ==================== */

function iBooksVideoController(element)
{    
    this.media = element;
    this.media.addEventListener("play", this, false);
}

iBooksVideoController.prototype.pause = function()
{    
    this.media.pause();
}

iBooksVideoController.prototype.handleEvent = function(event)
{
    if (event.type == "play") {
        // iBooks will stop any other media automatically
        // but let's also call pause() on each item to reset the UI
        
        var allMedia = iBookController.media.allMedia;
        
        for (var i = 0, max = allMedia.length; i < max; i++) {
            if (allMedia[i].media != this.media) {
                allMedia[i].pause();
            }
        }
    }
}

/* ==================== AUDIO CONTROLLER ==================== */
/**
 *  This is called when we've found a valid iBooks audio HTML element.
 *  
 *  By default, audio will pause itself on touch, then resume playing when touched again.
 *  To reset the audio track, include the HTML attribute <code>iBook.MEDIA_AUDIO_RESET_ATTRIBUTE</code>
 *  and set the value to equal to <code>true<code>.
 *
 *  For example:
 *  <div class="ibooks-media-audio" data-ibooks-audio-src="audio/src.m4a">Play audio</div>
 *
 *  @property {Object} element The required object to instantiate the <code>iBooksAudioController</code>
 */
function iBooksAudioController(element)
{    
    // iBook.log("iBooksAudioController construction:" + element);
    
    this.el = element;
    this.el.addEventListener(iBook.START_EVENT, this, false);
    this.src = this.el.getAttribute(iBook.MEDIA_AUDIO_SOURCE_ATTRIBUTE);
    this.resetAudioOnPlay = false; // For future maybe
    this.setAudio();
}

// Creates a new audio element, set the source, then load it.
iBooksAudioController.prototype.setAudio = function()
{    
    this.media = new Audio();
    this.media.src = this.src;
    this.media.addEventListener("ended", this, false);      
    document.documentElement.appendChild(this.media);
}

iBooksAudioController.prototype.play = function()
{
    var allMedia = iBookController.media.allMedia;
    
    for (var i = 0, max = allMedia.length; i < max; i++) {
        allMedia[i].pause();
    }
        
    if (this.resetAudioOnPlay) {
        // Remove the existing element to prevent duplicates.
        document.documentElement.removeChild(this.media);
        this.setAudio();
    }
    
    this.el.addClassName(iBook.ACTIVE_CSS_CLASS);
    this.media.play();
}

iBooksAudioController.prototype.pause = function()
{
    this.media.pause();
    this.el.removeClassName(iBook.ACTIVE_CSS_CLASS);
};

// When the audio ends, remove its active class
iBooksAudioController.prototype.ended = function()
{
    this.el.removeClassName(iBook.ACTIVE_CSS_CLASS);
}

/**
 *  On touch start, add an event listener for touch end. Store the
 *  touch start X, Y coordinates for later use.
 */
iBooksAudioController.prototype.touchStart = function(event)
{
//    iBook.log("iBooksAudioController.prototype.touchStart");
    
    this.startX = iBook.getEventClientX(event);
    this.startY = iBook.getEventClientY(event);
    window.addEventListener(iBook.END_EVENT, this, false);
}

/**
 *  On touch end, remove our event listeners. Determine if the user action was a 
 *  tap, or gesture; if the action was a tap then add <code>iBook.ACTIVE_CSS_CLASS</code>
 *  to the body class and prevent default. Otherwise, allow iBooks to handle the event.
 */
iBooksAudioController.prototype.touchEnd = function(event)
{
    /*
    iBook.log("iBooksAudioController.prototype.touchEnd");
    
    iBook.log("event.pageX=" + event.pageX);
    iBook.log("event.clientX=" + event.clientX);
    if (event.changedTouches && event.changedTouches.length == 1)
        iBook.log("event.changedTouches.item(0).clientX=" + event.changedTouches.item(0).clientX);
    */
    
    window.removeEventListener(iBook.END_EVENT, this, false);
    
    this.xTap = (Math.abs(this.startX - iBook.getEventClientX(event)) < iBook.TAP_THRESHOLD);
    this.yTap = (Math.abs(this.startY - iBook.getEventClientY(event)) < iBook.TAP_THRESHOLD);
    
    if (this.xTap && this.yTap) {
        event.preventDefault();
        if (this.media.paused)
            this.play();
        else
            this.pause();
    }
}

// Event triage.
iBooksAudioController.prototype.handleEvent = function(event)
{
    // iBook.log("iBooksAudioController.prototype.handleEvent:" + event.type);

    switch(event.type){
        case iBook.START_EVENT:
            this.touchStart(event);
            break;
        case iBook.END_EVENT:
            this.touchEnd(event);
            break;
        case "ended":
            this.ended();
            break;
    }
}





OEBPS/8524247019416518429.m4a


OEBPS/8524247019416518432.m4a


OEBPS/8524247019416518431.m4a


OEBPS/nav.xhtml

		
			
						
					Cover
				


			


		
		
			
						
					Cover
				


						
					Start
				


			


		
	

OEBPS/8524247019416518421.m4a


OEBPS/8524247019416518430.m4a


OEBPS/8524247019416518428.m4a


OEBPS/Cover.jpg
Birds





